Mouse Myeloperoxidase/MPO Biotinylated Antibody

Catalog # Availability Size / Price Qty
BAF3667
Product Details
Citations (2)
FAQs
Supplemental Products
Reviews

Mouse Myeloperoxidase/MPO Biotinylated Antibody Summary

Species Reactivity
Mouse
Specificity
Detects mouse Myeloperoxidase/MPO in Western blots. In Western blots, approximately 25% cross-reactivity with recombinant human MPO is observed.
Source
Polyclonal Goat IgG
Purification
Antigen Affinity-purified
Immunogen
Mouse myeloma cell line NS0-derived recombinant mouse Myeloperoxidase/MPO
Met16-Thr718
Accession # AAR99349
Formulation
Lyophilized from a 0.2 μm filtered solution in PBS with BSA as a carrier protein.
Label
Biotin

Applications

Recommended Concentration
Sample
Western Blot
0.1 µg/mL
Recombinant Mouse Myeloperoxidase/MPO (Catalog # 3667-MP)

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Preparation and Storage

Reconstitution
Reconstitute at 0.2 mg/mL in sterile PBS.
Loading...
Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 6 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: Myeloperoxidase/MPO

Myeloperoxidase (MPO) is a heme-containing enzyme belonging to the XPO subfamily of peroxidases. It is an abundant neutrophil and monocyte glycoprotein that catalyzes the hydrogen peroxide-dependent conversion of chloride, bromide, and iodide to multiple reactive species (1). Post-translational processing of human MPO involves the insertion of a heme moiety and the proteolytic removal of both a propeptide and a 6 aa internal peptide (2). This results in a disulfide-linked dimer composed of a 60 kDa heavy and 12 kDa light chain that associate into a 150 kDa enzymatically active tetramer. The tetramer contains two heme groups and one disulfide bond between the heavy chains (2). Mouse and human MPO share 87% aa sequence identity. MPO activity results in protein nitrosylation and the formation of 3‑chlorotyrosine and dityrosine crosslinks (4‑6). Modification of ApoB100, as well as the lipid and cholesterol components of LDL and HDL, promotes the development of atherosclerosis (5, 7‑9). MPO is also associated with a variety of other diseases (1), and inhibits vasodilation in inflammation by depleting the levels of NO (10). Serum albumin functions as a carrier protein during MPO movement to the basolateral side of epithelial cells (11). MPO is stored in neutrophil azurophilic granules. Upon cellular activation, it is deposited into pathogen‑containing phagosomes (2). While mice lacking MPO are impaired in clearing select microbial infections, MPO deficiency in humans does not necessarily result in heightened susceptibility to infections (12, 13).

References
  1. Klebanoff, S.J. (2005) J. Leukoc. Biol. 77:598.
  2. Hansson, M. et al. (2006) Arch. Biochem. Biophys. 445:214.
  3. Hashinaka, K. et al. (1988) Biochemistry 27:5906.
  4. van Dalen, C.J. et al. (2000) J. Biol. Chem. 275:11638.
  5. Hazen, S.L. and J.W. Heinecke (1997) J. Clin. Invest. 99:2075.
  6. Heinecke, J.W. et al. (1993) J. Clin. Invest. 91:2866.
  7. Podrez, E.A. et al. (1999) J. Clin. Invest. 103:1547.
  8. Bergt, C. et al. (2004) Proc. Natl. Acad. Sci. 101:13032.
  9. Hazen, S.L. et al. (1996) J. Biol. Chem. 271:23080.
  10. Eiserich, J.P. et al. (2002) Science 296:2391.
  11. Tiruppathi, C. et al. (2004) Proc. Natl. Acad. Sci. 101:7699.
  12. Aratani Y. et al. (2000) J. Infect. Dis. 182:1276.
  13. Kutter, D. (1998) J. Mol. Med. 76:669.
 
Entrez Gene IDs
4353 (Human); 17523 (Mouse); 303413 (Rat)
Alternate Names
EC 1.11.1; EC 1.11.1.7; MPO; Myeloperoxidase

Product Datasheets

You must select a language.

x

Citations for Mouse Myeloperoxidase/MPO Biotinylated Antibody

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

2 Citations: Showing 1 - 2
Filter your results:

Filter by:

  1. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1b secretion
    Authors: Yalcinkaya M, Fotakis P, Liu W et al.
    Cardiovascular research
  2. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis
    Authors: Wenli Liu, Nataliya Östberg, Mustafa Yalcinkaya, Huijuan Dou, Kaori Endo-Umeda, Yang Tang et al.
    Journal of Clinical Investigation

FAQs

No product specific FAQs exist for this product, however you may

View all Antibody FAQs
Loading...

Reviews for Mouse Myeloperoxidase/MPO Biotinylated Antibody

There are currently no reviews for this product. Be the first to review Mouse Myeloperoxidase/MPO Biotinylated Antibody and earn rewards!

Have you used Mouse Myeloperoxidase/MPO Biotinylated Antibody?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review