Mouse HGFR/c-MET Antibody

Catalog # Availability Size / Price Qty
MAB527
MAB527-SP
Product Details
Citations (1)
FAQs
Supplemental Products
Reviews

Mouse HGFR/c-MET Antibody Summary

Species Reactivity
Mouse
Specificity
Detects the alpha subunit of mouse HGF R/c‑MET in direct ELISAs and Western blots.
Source
Monoclonal Rat IgG2A Clone # 118624
Purification
Protein A or G purified from hybridoma culture supernatant
Immunogen
S. frugiperda insect ovarian cell line Sf 21-derived recombinant mouse HGF R/c‑MET
Glu25-Asn929
Accession # P16056
Formulation
Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. *Small pack size (SP) is supplied either lyophilized or as a 0.2 µm filtered solution in PBS.
Label
Unconjugated

Applications

Recommended Concentration
Sample
Western Blot
1 µg/mL
Recombinant Mouse HGF R/c-MET Fc Chimera (Catalog # 527-ME)

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Preparation and Storage

Reconstitution
Reconstitute at 0.5 mg/mL in sterile PBS.
Loading...
Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (SP) is shipped with polar packs. Upon receipt, store it immediately at -20 to -70 °C
Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 6 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: HGFR/c-MET

HGF R, also known as Met (from N-methyl-N’-nitro-N-nitrosoguanidine induced), is a glycosylated receptor tyrosine kinase that plays a central role in epithelial morphogenesis and cancer development. HGF R is synthesized as a single chain precursor which undergoes cotranslational proteolytic cleavage. This generates a mature HGF R that is a disulfide-linked dimer composed of a 50 kDa extracellular  alpha  chain and a 145 kDa transmembrane beta chain (1, 2). The extracellular domain (ECD) contains a seven bladed beta -propeller sema domain, a cysteine-rich PSI/MRS, and four Ig-like E-set domains, while the cytoplasmic region includes the tyrosine kinase domain (3, 4). An alternately spliced form of mouse HGF R lacks a cytoplasmic juxtamembrane region important for regulation of signal transduction (5, 6). The sema domain, which is formed by both the alpha and beta chains of HGF R, mediates both ligand binding and receptor dimerization (3, 7). Ligand-induced tyrosine phosphorylation in the cytoplasmic region activates the kinase domain and provides docking sites for multiple SH2-containing molecules (8, 9). HGF stimulation induces HGF R down‑regulation via internalization and proteasome-dependent degradation (10). In the absence of ligand, HGF R forms noncovalent complexes with a variety of membrane proteins including CD44v6, CD151, EGF R, Fas, integrin  alpha 6/ beta 4, plexins B1, 2, 3, and MSP R/Ron (11‑18). Ligation of one complex component triggers activation of the other, followed by cooperative signaling effects (11‑18). Formation of some of these heteromeric complexes is a requirement for epithelial cell morphogenesis and tumor cell invasion (11, 15, 16). Paracrine induction of epithelial cell scattering and branching tubulogenesis results from the stimulation of HGF R on undifferentiated epithelium by HGF released from neighboring mesenchymal cells (19). Genetic polymorphisms, chromosomal translocation, overexpression, and additional splicing and proteolytic cleavage of HGF R have been described in a wide range of cancers (1). Within the ECD, mouse HGF R shares 87%, 87%, and 94% amino acid sequence identity with canine, human, and rat HGF R, respectively.

References
  1. Birchmeier, C. et al. (2003) Nat. Rev. Mol. Cell Biol. 4:915.
  2. Corso, S. et al. (2005) Trends Mol. Med. 11:284.
  3. Gherardi, E. et al. (2003) Proc. Natl. Acad. Sci. 100:12039.
  4. Chan, A.M. et al. (1988) Oncogene 2:593.
  5. Lee, C-C. and K.M. Yamada (1994) J. Biol. Chem. 269:19457.
  6. Lee, C-C., et al. (1995) J. Biol. Chem. 270:507.
  7. Kong-Beltran, M. et al. (2004) Cancer Cell 6:75.
  8. Naldini, L. et al. (1991) Mol. Cell. Biol. 11:1793.
  9. Ponzetto, C. et al. (1994) Cell 77:261.
  10. Jeffers, M. et al. (1997) Mol. Cell. Biol. 17:799.
  11. Orian-Rousseau, V. et al. (2002) Genes Dev. 16:3074.
  12. Klosek, S.K. et al. (2005) Biochem. Biophys. Res. Commun. 336:408.
  13. Jo, M. et al. (2000) J. Biol. Chem. 275:8806.
  14. Wang, X. et al. (2002) Mol. Cell 9:411.
  15. Trusolino, L. et al. (2001) Cell 107:643.
  16. Giordano, S. et al. (2002) Nat. Cell Biol. 4:720.
  17. Conrotto, P. et al. (2004) Oncogene 23:5131.
  18. Follenzi, A. et al. (2000) Oncogene 19:3041.
  19. Sonnenberg, E. et al. (1993) J. Cell Biol. 123:223.
Long Name
Hepatocyte Growth Factor Receptor
Entrez Gene IDs
4233 (Human); 17295 (Mouse)
Alternate Names
AUTS9; cMET; c-MET; EC 2.7.10; EC 2.7.10.1; hepatocyte growth factor receptor; HGF R; HGF receptor; HGF/SF receptor; HGFR; Met (c-Met); met proto-oncogene (hepatocyte growth factor receptor); met proto-oncogene tyrosine kinase; MET; oncogene MET; Proto-oncogene c-Met; RCCP2; Scatter factor receptor; SF receptor; Tyrosine-protein kinase Met

Product Datasheets

You must select a language.

x

Citation for Mouse HGFR/c-MET Antibody

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

1 Citation: Showing 1 - 1

  1. Neuritogenic activity of chondroitin/dermatan sulfate hybrid chains of embryonic pig brain and their mimicry from shark liver. Involvement of the pleiotrophin and hepatocyte growth factor signaling pathways.
    Authors: Li F, Shetty AK, Sugahara K
    J. Biol. Chem., 2006-12-04;282(5):2956-66.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Neutralization

FAQs

No product specific FAQs exist for this product, however you may

View all Antibody FAQs
Loading...

Reviews for Mouse HGFR/c-MET Antibody

There are currently no reviews for this product. Be the first to review Mouse HGFR/c-MET Antibody and earn rewards!

Have you used Mouse HGFR/c-MET Antibody?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review